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Abstract 

A quantized technique has been suggested for the solution of coupled partial differential equations of gas-solid non-catalytic reactions. The 
application of this method to the nucleation model, which is important in metals production, is presented. This procedure provides a rapid 
prediction of conversion-time behaviour and an estimation of the kinetic parameters from the experimental data. The results of this method 
are compared with the numerical and approximate solutions, and show good accuracy. 0 1997 Published by Elsevier Science S.A. 
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1. Introduction 

Gas-solid reactions are important in many chemical and 
metallurgical processes. Nucleation effects are often signifi- 
cant, for example in the reduction of metallic oxides. The 
conversion-time behaviour of these systems at low 
temperatures shows periods of induction, acceleration, and 
decay [ 11, e.g. in the reduction of nickel oxide with hydrogen 
[21. 

Most gas-solid reactions start with the formation of nuclei 
at the solid surface. As the reaction progresses, these nuclei 
increase in size, overlap one another and cover the surface. 
When the temperature is high or the surface/volume ratio is 
small, the induction time is negligible and nucleation is not 
important. However for the reaction of very line solid grains 
in a porous pellet, nucleation is important and sigmoidal 
curves of the conversion-time behaviour are obtained. A rate 
equation, in the absence of pore diffusion, has been developed 
for the interpretation of experimental conversion-time data 
showing sigmoidal trends [ 31. 

A more general problem has been presented for isothermal 
and non-isothermal cases [ 41. The effect of pore diffusion in 
the nucleation model has been analysed by Sohn [5]. A 
numerical solution and an approximate relation between the 
conversion and time have also been presented. In Ref. [ 61, 
the population balance approach was applied to the cuprous 
iodide oxidation system. In Ref. [7], the cumulative gas 
concentration was defined and the orthogonal collocation 
method was applied to solve the nucleation model equations. 

* Corresponding author. 

The results of Ref. [ 71 are in good agreement with the numer- 
ical solution of Sohn [ 51. Finally, Shieh and Lee [ 81 incor- 
porated induction time in the shrinking core model equations 
using the surface activation concept. 

In this work, a mathematical method [ 9,101 is applied to 
solve the nucleation model equations. The results of this 
method are compared with the numerical and approximate 
solutions, and show acceptable accuracy. This method is very 
simple to handle on small calculators, and gives an analytical 
expression for gas and solid concentrations. 

2. Mathematical model 

A general gas-solid reaction can be given as 

A(g) +~,B(s) -+C(g> +u$(s) (1) 

For a single porous pellet, the following assumptions can be 
made. 
1. The system is isothermal. 
2. The pellet size and its porosity do not change during the 

reaction. Thus we have a constant effective diffusivity. 
3. The reaction is irreversible and first order with respect to 

the gaseous reactant. 
4. The pseudo-steady-state approximation is valid. 
5. There is equimolar counter-diffusion. 
6. The external mass transfer resistance is negligible. 

The general dimensionless conservation equations of gas 
and solid, based on nucleation growth kinetics [ 51, are 
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Fig. I. Comparison of this work with numerical and approximate solutions of Sohn [5], for n = I and spherical pellets (small modulus) 
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where the dimensionless quantities are defined in the notation, 
(2) and 

db a -- 
ii-f'(b) 

with the initial and boundary conditions 

0=0b=l 

y=() d”=() 
a4’ 

(3) af(b> 
f'(b)=y (7) 

f(b) = [-In(b)]“” (8) 
(4) 

These coupled partial differential equations must be solved 
(5) numerically. An approximate solution based on the law of 

addition of the reaction and diffusion times has also been 
y=l a=1 (6) presented [ 5 ] . 
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Fig. 2. Comparison of this work with numerical solution of Dudukovic and Lamba [ I I] and approximate solution of Sohn [ 51, for n = 1 and spherical pellets 
( large modulus). 
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Fig. 3. Comparison of this work with numerical and approximate solutions of Sohn [ 51, for n = 3 and spherical pellets (small modulus ), 

3. Quantized solution technique 

3.1. Case I: n=l 

Assuming n = 1, Eqs. (7) and (8) give 

and Eqs. (2) and (3) can be written as 

a*a(j,i) I Fp- 1 aa 

ay(i)2 
-= 2F$,b(j,i)atj,i) 

y(i) aY(4 
(10) 

ab(j,i) 
-= - b(j,i)a(j,i) 
WA 

(11) 

where j and i are the time and position indices respectively. 
The numerical solution for the above coupled partial dif- 

ferential equations leads to a large set of coupled linear equa- 
tions. In these linear equations, au&), a6.i + 1) , a(j,i - 1 ), 
b(j,i), bu- 1,i) ,... are related to each other. Therefore much 
computational effort is needed to obtain the final results. 

In this work, in contrast to the numerical solution, it is 
assumed that aG,i) and btj,i) are independent of a(j,i + 1 ), 
b(jfl,i),y(i&-l)andB(jfl).Inotherwordsthevariables 
a, 6, 8 and y are related only by their (j,i) states. They are 
independent in terms of their (J’ - 1 ,i) or (j,i - 1) states. 

In this technique, a(j.i) and b(j,i) react with each other at 
jth time and ith space. Thus there is no reaction between 
a(j,i) and b(j- 1,i). 

If we use bt’- 1,i) instead of b(j,i) in Eq. ( IO) as an 
approximation, certain errors of computation are expected. 
In the following section, it is shown that this error is small. 
Using this approximation, we have 

8a(j,i) I Fp- 1 da(j,i) 

NV 
-=2F,,ri&b~- l,i)a(j,i) 

y(i) Wi) 
(12) 

According to the quantized assumption, b(j- I,i) can be 
treated as a constant in Eq. ( 12). With this assumption, on 
the right-hand side of Eq. ( 12), uu,i) is the only variable, 
and the other terms can be treated as a constant. Therefore a 
new modified Thiele modulus is defined as 

M,(j,i) = 2F&,b~- 1,~‘) (14) 

By inserting Eq. ( 14) into Eq. ( 12)) we obtain 

(15) 

Using the above assumption, Eq. ( 15) will be independent 
of Eq. ( 13), and we can integrate Eq. ( 15) with boundary 
conditions Eqs. (5) and (6) ; thus for slab pellets (Fp = 1) 

cl(&) = 
cosh(M,y) 

cosh(M,) 

and for spherical pellets (Fp = 3) 

u(j,i) = 
sinh( M,y) 

y sinh( M, ) 

(16) 

(17) 

By inserting Eqs. (16) or (17) into Eq. (13), and inte- 
grating with the initial condition Eq. (4)) we obtain the solid 
concentration. For example, for spherical pellets, we have 

bu,i) =exp - 
sinh(M,y) 8 
y sinh M, 1 (18) 

In this integration, according to quantization, M,, which is a 
function of b(j - 1 ,i) , is independent of bu,i) and 6(j). Eq. 



4 E. Jumshidi. H. Ale Ebrahim / Chemical Engineering Journal 68 (1997) Id 

Table I 
Errors of this work and approximate solution with respect to numerical solution of Sohn [ 5 I, for n = I and spherical geometry (small modulus) ’ 

Numerical solution of Sohn [ 51 

Result 

Approximate solution of Sohn [ 51 

Result Error B 

This work 

Result Error % 

0.2 0.130 0.180 38.5 0.141 8.5 
0.4 0.260 0.320 23.1 0.267 2.7 
0.6 0.370 0.420 13.5 0.381 3.0 
0.8 0.460 0.510 10.9 0.482 4.8 
1 .o 0.550 0.570 3.6 0.570 3.6 
1.2 0.620 0.640 3.2 0.646 4.2 
1.4 0.690 0.700 1.4 0.711 3.0 
1.6 0.740 0.744 0.5 0.765 3.4 
1.8 0.790 0.780 - 1.3 0.809 2.4 
2.0 0.830 0.810 - 2.4 0.846 1.9 

“ci,=l,n=l,F,=3. 

( 18) seems to be implicit. However, in the quantizedmethod, 
b in the expression for M, is constant between two small time 
increments. Therefore M, is calculated using b(~‘- 1 ,i) 

Eqs. ( 16)-( 18) show the concentration profiles of gas and 
solid, and from these we can compute b at each time and 
position. Then, from Eq. ( 14)) we can compute the new M, 
from b at the same position, but at the previous time incre- 
ment. Conversion of the solid at each time can be calculated 
for slab pellets 

x0’) = I- I 
b(j,i)dy ( 19) 

0 

and for spherical pellets 
I 

x0’) = 1 - 3 
I 

bCj,i)y2 dy 
0 

(20) 

3.2. Case 2: n = 3 

In this case, from Eqs. (7) and (8) we have 

Table 2 

f’(b)=- ’ 
3b[ -ln(b)]2” 

Thus the model equations are 

#a F - 1 aa 
av2+ 

---6F,6hb[ -ln(b)J*‘“a 
Y fJY 

(21) 

(22) 

g= -3b[ -ln(b)]““a (23) 

We can define the modified Thiele modulus for n = 3 as 

M,(j,i) =46F,&ib(j-- l,i)( -ln[b(j-l,i)])2” (24) 
By applying the quantized method, the concentration pro- 

files and conversion for 12 = 3 can be calculated. For example, 
the final results for spherical pellets are 

a(j,i) = 
SW&y) 

Y sinh(Md 
(25) 

b(j,i) = exp( - [ afj,i) f3] “} (26) 

XCj) = 1 - 3 b(j,i)y* dy (27) 
0 

Errors of this work and approximate solution of Sohn [ 51 with respect to numerical solution of Dudukovic and Lamba [ 1 I 1, for n = I and spherical geometry 
(large modulus) ’ 

el Numerical solution of Dudukovic and Lamba [ II ] Approximate solution of Sohn [ 51 This work 

Result Result Error o/r Result Error 8 

2 
3 
4 
5 
6 
7 
8 
9 

IO 

0.098 0.151 54.1 0.099 1 .o 
0.171 0.214 25.1 0.176 2.9 
0.224 0.262 17.0 0.237 5.8 
0.279 0.301 7.9 0.286 2.5 
0.312 0.335 7.4 0.323 3.5 
0.350 0.364 4.0 0.352 0.6 

0.380 0.39 1 2.9 0.374 - 1.6 

0.40 1 0.416 3.7 0.392 - 2.2 
0.430 0.439 2.1 0.407 -5.3 
0.452 0.460 1.8 0.420 -7.1 

1 B,= 10.2, n= I. F,=3. 
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Table 3 
Errors of this work and approximate solution with respect to numerical solution of Sohn [ 51, for n = 3 and spherical geometry (small modulus) d 

Numerical solution of Sohn [ 51 Approximate solution of Sohn [5] This work 

Result Result Error Q Result Error L?c 

0.4 0.050 0.060 20.0 0.044 - 12.0 

0.6 0.140 0.190 35.7 0.117 - 16.4 

0.8 0.290 0.360 24.1 0.222 - 23.4 

1 .o 0.460 0.520 13.0 0.35 I - 23.7 

1.2 0.620 0.660 6.5 0.494 - 20.3 

1.4 0.750 0.760 I.3 0.640 - 14.7 

1.6 0.870 0.830 -4.6 0.779 - 10.5 
1.8 0.940 0.890 -5.3 0.882 -6.2 
2.0 0.960 0.910 -5.2 0.940 -2.1 

4. Conclusions 

In this work, we propose a quantized analytical solution 
directly applicable to the coupled partial differential equa- 
tions of the nucleation model. The predicted conversion-time 
behaviour from the above equations is compared with the 
numerical and approximate solutions of Sohn [5]. The 
approximate solution of Sohn [ 5 ] is a relation between con- 
version and time. For example, for spherical pellets, it is 

O=[-ln(1-X)]““+62,[1-3(1-X)2’3+2(1--X)] 

(28) 

Fig. 1 shows a comparison of our work with the numerical 
and approximate solutions of Sohn [ 51 for IZ = 1, I;‘r = 3 and 
small modulus. For iz = 1, the induction time is not available. 
Fig. 2 shows a comparison of our work with the approximate 
solutions of Sohn [ 51 and the numerical solutions of Dudu- 
kovic and Lamba [ 111 for n = 1, F,, = 3 and large modulus. 
Fig. 3 shows a comparison of our work with the numerical 
and approximate solutions of Sohn [5] for n= 3 and low 
modulus. For n = 3 and large modulus, no numerical solution 
is available for comparison. 

As shown in Figs. 1-3, the agreement between our work 
and the numerical solution is excellent for n = 1, and good 
for n = 3, at small modulus. For large modulus and small and 
intermediate dimensionless times, our method is more accu- 
rate than Sohn’s approximate solution (see Fig. 2). However, 
for large modulus and large dimensionless times, Sohn’s 
approximate solution gives better results. Tables l--3 show a 
comparison of our work accuracy with the approximate solu- 
tion of Sohn [5]. 

This method provides simple mathematical expressions 
which can be used for the rapid prediction of the conversion- 
time behaviour of the nucleation model, and considerably 
reduces the computational effort required. 

Appendix A. Nomenclature 

a=C,lC,, 
b= C,/C,, 

dimensionless gas concentration 
dimensionless solid concentration 

C* 
C AS- 
CB 
C BO 

D, 

f(b) 
f(b) 
FP 
i 

j 
k 

Ml 

M, 

n 

r 
R 
t 
X 
y=rlR 
E 
f3= v,kC,,t 

VN 

PB 
n kc+s(l-E) 

cTN= 2D,F, 

gas concentration in the pellet 
bulk gas concentration 
solid concentration 
initial solid concentration 
effective diffusivity of gas A in the 
pellet 
[-In(b)]“” 
[@(b)/abl 
shape factor of the pellet 
position index 
time index 
reaction rate constant 
modified Thiele modulus defined by Eq. 
( 14) 
modified Thiele modulus defined by Eq. 
(24) 
a positive integer in Eq. (8) 
distance from the centre of the pellet 
characteristic pellet length 
time 
solid conversion 
dimensionless position 
pellet porosity 
dimensionless time 
stoichiometric coefficient of N 
true molar density of solid reactant B 

Thiele modulus for nucleation model 

References 

[ I ] P.A. Ramachandran. L.K. Doraiswamy, Modeling ofnoncatalytic gas- 
solid reactions, AIChE J. 28 ( 1982) 881-900. 

[2] J. Szekely, C.I. Lin, H.Y. Sohn, A structural model for gas-solid 
reactions with a moving boundary, V: an experimental study of the 
reduction of porous nickel-oxide pellets with hydrogen, Chem. Eng. 
Sci. 28 (1973) 1975-1989. 

[ 31 M. Avrami, Granulation. phase change, and microstructural kinetics 
of phase change III, J. Chem. Phys. 9 ( 194 I ) 177- 184. 

[4] E. Ruckenstein, T. Vavanellos, Kinetics of solid phase reactions, 
AIChE J. 21 (1975) 756763. 



6 E. Jamshidi, H. Ale Ebruhim /Chemical Engineering Journal 68 (1997) 14 

[5] H.Y. Sohn, The law of additive reaction times in fluid-solid reactions, 
Metall. Trans. B 9 ( 1978) 89-96. 

[6] S.K. Bhatia, D.D. Perlmutter, A population balance approach to the 
modeling of solid phase reactions, AIChE J. 25 ( 1979) 298-306. 

[7] PC. Prasannan, P.A. Ramachandran, L.K. Doraissamy, Gas-solid 
reactions: a method of direct solution for solid conversion profiles. 
Chem. Eng. J. 33 (1986) 19-25. 

[ 81 M.D. Shieh, C. Lee, A more general structural model which includes 
the induction time for gas-solid reactions I: nonporous solids, Chem. 
Eng. Sci. 47 (1992) 40174025. 

]9] E. Jamshidi, H. Ale Ebrahim, A new solution technique of moving 
boundary problems for gas-solid reactions: application to the half order 
volume reaction model, Chem. Eng. J. 63 ( 1996) 79983. 

[ 101 E. Jamshidi, H. Ale Ebrahim, An incremental analytical solution for 

gas-solid reactions: application to the grain model, Chem. Eng. Sci. 
51 (1996)42534257. 

[ 111 M.P. Dudukovic, H.S. Lamba. Solution of moving boundary problems 
for gas-solid noncatalytic reactions by orthogonal collocation, Chem. 
Eng. Sci. 33 (1978) 303-314. 


